Accueil Optipédia Les méthodes de test Shack Hartmann

Dans l’article sur le senseur de courbure, nous avons vu qu’il est possible, à partir des variations d’intensité d’une onde propagée depuis une optique imparfaite, de retrouver grâce à l’équation de transfert en intensité les variations de la phase introduites par les défauts optiques. Nous avons vu aussi que cette analyse des variations d’intensité peut être perturbée par des artefacts locaux issus d’autres sources que le front d’onde analysé.

Un autre moyen d’utiliser l’équation de transfert en intensité est de relever les distorsions qui peuvent s’appliquer à un motif introduit au début de la propagation du front d’onde. En effet, lors de la propagation, les décalages de phase locaux du front d’onde vont modifier le motif.

 Propagation de l'intensité devant un masque.

 

Le motif du masque étant connu, il suffit de le comparer au motif obtenu après la propagation pour en déduire la carte de phase. Cette technique est insensible aux variations d’intensités puisqu’elles ne modifient pas la position des barycentres des points illuminés mais uniquement leur intensité.

 Insensibilité du Hartmann aux variations d'intensité.

Cette technique est également achromatique et peut fonctionner quelque soit la longueur d’onde, voir en lumière continue. De même le front d’onde incident peut être non plan, voir être une image d’un objet non ponctuel. Dans ce cas le masque donnera de petites images juxtaposées.

Ce principe d’introduction d’un masque est dû à Hartmann et date du 19eme siècle. Il a été utilisé pour l’analyse qualitative de télescopes et reste toujours utilisé aujourd’hui par les astronomes amateurs comme une aide à la focalisation ou à l’alignement optique de leur instrument. Malgré l’utilisation de masques de plus en plus complexes, le principe est resté le même : un déphasage (introduit par exemple par une défocalisation) modifie géométriquement un motif placé en début de propagation du flux lumineux.

 Masque de Hartmann

Sur l’exemple ci-dessus, un masque de Hartmann est placé à la pupille d’entrée d’un télescope. L’image résultante après propagation montre que le masque est déformé. Le déplacement des trous du masque résulte des décalages de la phase introduits par l’optique. Dans l’exemple cité, il s’agit d’une aberration sphérique.

Dans les années soixante dix, Shack introduisit une évolution du masque de Hartmann par l’utilisation d’une matrice de microlentilles à la place du masque troué. Grâce à la disponibilité des tout jeunes capteurs CCD, il devint possible de récupérer les positions des points de focalisation des microlentilles et d’en déduire la carte de phase : le Shack Hartmann était né.

 Shack Hartmann

Le décalage des images issues des microlentilles, appelées barycentres, permet de déduire les pentes locales du front d’onde : le Shack Hartmann (SH) donne la dérivée du front d’onde. 

Les pentes du front d'onde 

Après intégration de ces dérivées, on obtient la carte de phase recherchée.

Le Shack Hartmann est très utilisé en métrologie optique, en analyse de front d’onde en temps réel pour le contrôle d’optiques adaptatives (microscopie, astronomie), ainsi qu’en contrôle et chirurgie ophtalmique.

Analyse d'une lunette astronomique

Avantages de l’analyseur de front d’onde de Shack Hartmann

  • - Analyse très rapide : plusieurs dizaines - voir centaines en optique adaptative - de mesures par seconde
  • - permet l’assistance aux alignements optiques en temps réel
  • - sensibilité de λ/20 à λ/1000 selon les équipements
  • - mesure absolue sans référence
  • - dynamique de mesure importante : plusieurs centaines ou milliers de λ permettant de mesurer des fronts d’onde très aberrants
  • - insensible aux vibrations
  • - peut fonctionner en lumière continue, par exemple sur une étoile réelle
  • - principe de fonctionnement intuitif
  • - des solutions commerciales sont disponibles, calibrées et performantes.

Inconvénients

  • - Résolution spatiale liée à la matrice de microlentilles : de quelques dizaines à quelques dizaines de milliers de points de mesure
  • - nécessite un front d’onde incident parfait de la taille de la pupille à mesurer, ou bien un système d’autocollimation
  • - coût élevé.