Visibilité: Privée

AiryLab. 34 rue Jean Baptiste Malon, 04800 Gréoux les Bains

Rapport de mesure / Optical measurement report

Référence	2016-37001
Date	05/09/2016
Opérateur	FJ
Procédure de mesure	RF-DP
Haso	HA-4333
LIP	LI-1028
Objectif(s)	MOD32-4
Miroir	RS-530

Client	xxx
Type d'optique	Maksutov Newton
Fabricant	Skywatcher
Nom/modèle	MN190
S/N	-

Longueur d'onde
473
543
635
805

Termes d'aberration pris en compte dans les résultats		
Tilt X		
Tilt Y		
Focus		
Astig 0°		
Astig 45°		
Coma 0°		
Coma 90°		
Sphérique		

Incertitude PTV	9,86 nm
Incertitude RMS	0,6 nm
Interpolation	X2
Mode	Zonal + modal
référence	Oui
Mesures moyennées	200
Double passage	Oui
température	25°
Sous pupilles	-
Conjugaison de pupille	Oui

Essais réalisés	
Centrage sur l'axe ⁽¹⁾	RA
Mesure sur l'axe	Oui
Mesure chromatisme	Oui
Mesure sur mécanique	Oui
Alignement optique (« collimation »)	Oui
Mesure dans le champ	Oui
Courbure de champ	Oui
Système correcteur	Non
Conjugaison	∞ Foyer

^{(1):} RR rétroréflexion laser HENE, RA réduction des aberrations de champ.

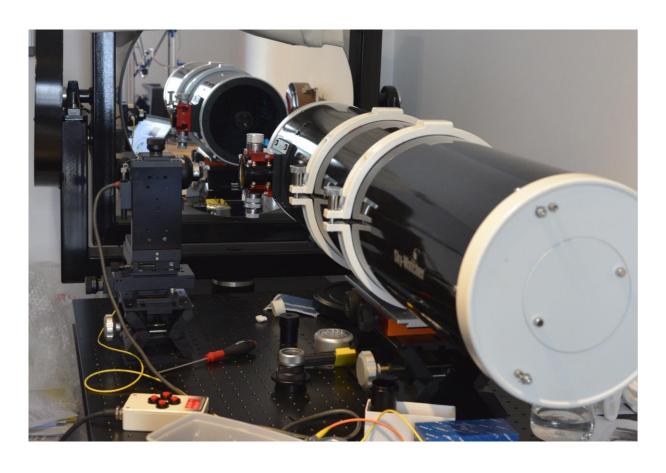
Visibilité : Privée

Référence	Test reference
Date	Test Date
Opérateur	Operator
Procédure de mesure	Procedure reference
Haso	Haso serial
LIP	LIP serial
Objectif(s)	Adaptation lens
Miroir	Autocol mirror ref

Client	Customer
Type d'optique	Optic type
Fabricant	Manufacturer
Nom/modèle	Name/Model
S/N	Serial

Longueur d'onde	Wavelength used
473	Blue, can be 445nm
543	Green
635	Red
805	IR

Termes d'aberration pris en compte dans les résultats Aberration term (Zernike) used for the results	
Tilt X	
Tilt Y	
Focus	
Astig 0°	
Astig 45°	
Coma 0°	
Coma 90°	
Sphérique Spherical aberration	


Incertitude PTV	Uncertainty PTV
Incertitude RMS	Uncertainty RMS
Interpolation	μlens interpolation
	Modal (Zernike) or
Mode	Zonal mode
	Referenced
référence	measurement
	Number of averaged
Mesures moyennées	WFE
Double passage	Double pass
température	Temperature
Sous pupilles	Pupil size
	Has pupil
	conjugaison on the
Conjugaison de pupille	μlens array

Essais réalisés	
Measurement description	
Centrage sur l'axe ⁽¹⁾	On Axis centering type
Mesure sur l'axe	On axis measurement
Mesure chromatisme	Chromatism
Mesure sur mécanique	With OTA
Alignement optique (« collimation »)	Optical alignment
Mesure dans le champ	Field performances
Courbure de champ	Field curvature
Système correcteur	Additional corrector
Conjugaison	Conjugaison type

Sommaire

JU	mman		
1	Donné	es théoriques / Theorical data	5
2	Inform	ations spécifique à ces mesures	5
3	Evolut	on de l'astigmatisme durant d'alignement / Astigmatism evolution during alignment	6
	3.1.1	Front d'onde / WFE	6
4	Mesur	es sur l'axe après alignement / On axis measurement after alignment	7
4	.1 M	esure sur l'axe à 635nm / <i>On axis at 635nm</i>	7
	4.1.1	Front d'onde / WFE	7
	4.1.2	Front d'onde hors astigmatisme / WFE without astigmatism	7
	4.1.3	PSF	8
	4.1.4	MTF	8
	4.1.5	Décomposition de Zernike / Zernike polynomial breakdown	9
4	.2 M	esure sur l'axe à 543nm / / On axis at 543nm	10
	4.2.1	Front d'onde / WFE	10
	4.2.2	Front d'onde hors astigmatisme / WFE without astigmatism	10
	4.2.3	PSF	11
	4.2.4	MTF	11
	4.2.5	Décomposition de Zernike / Zernike polynomial breakdown	12
4	.3 M	esure sur l'axe à 473nm / / On axis at 473nm	13
	4.3.1	Front d'onde / WFE	13
	4.3.2	Front d'onde hors astigmatisme / WFE without astigmatism	13
	4.3.3	PSF	14
	4.3.4	MTF	14
	4.3.5	Décomposition de Zernike / Zernike polynomial breakdown	15
4	.4 Fr	ont d'onde Résiduel (mamelonnage) / Residual wavefront (ripple)	16
4	.5 C	nromatisme / Chromatism aberration	17
	4.5.1	Décalage des meilleurs foci sur l'axe / Best foci shift on axis	17
	4.5.2	Sphérochromatisme / Spherochromatism	18
	4.5.3	Aberration sphérique en fonction de la longueur d'onde / Spherical aberration vs wav	elength
5	Mesur	e dans le champ à 635nm / Performance in the field at 635nm	20
5	5.1 C	ourbure de champ / Field curvature	20
5	5.2 S _I	oot diagram 635nm	21
Fin	du doci	ument	22

Visibilité: Privée

Visibilité: Privée

1 Données théoriques / Theorical data

Lens data (FL, aperture, F/D) Theorical PSF size and MTF cut-off versus wavelength.

Focale: 1000. Pupille: 190mm.

Nombre d'ouverture : 5.3

Diamètre théorique de la tâche de diffraction :

Focale	1000
Diamètre	190
Longueur d'onde	Taille PSF μm
635	8,15
543	6,97
473	6,07

Fréquences théoriques de coupure de la fonction de transfert de modulation (FTM) en cycles/mm Theorical MTF cut-off frequency versus the wavelength.

Focale	1000
Diamètre	190
Longueur d'onde	Coupure
635	299,21
543	349,91
473	401,69

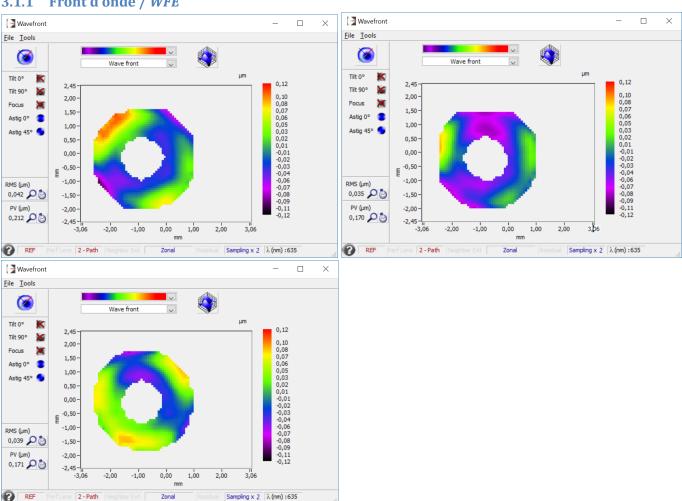
2 Informations spécifique à ces mesures

Les mesures sont faites au meilleur foyer par minimisation de l'erreur de front d'onde PTV. La précision de mesure sur l'axe Z est de 10µm.

Objectif des mesures de front d'onde : Ces mesures correspondent à la mesure de la forme globale du front d'onde issu du système. Il s'agît de la mesure la plus importante en termes de résolution optique. Cette mesure donne les valeurs d'erreur sur le front d'onde Peak To Valley (PTV) et moyennée (RMS). Un instrument est considéré comme étant limité par la diffraction pour la valeur d'erreur PTV de 135nm. Néanmoins il faut prendre en compte le diamètre et l'ouverture relative de l'instrument : plus l'instrument est grand et ouvert et plus il est difficile d'avoir une erreur faible.

Ces mesures peuvent être effectuées sur l'axe et dans le champ et à différentes longueurs d'onde.

La mesure du front d'onde permet de déduire la <u>PSF</u> (tâche de diffraction), la <u>fonction de transfert de</u> <u>modulation</u> (contraste en fonction des fréquences spatiales) et le <u>ratio de Strehl</u>.

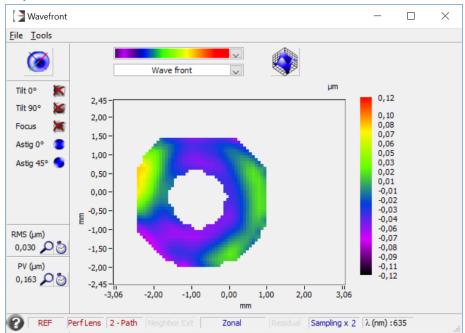

Wavefront measurement objectives: The Wavefront Error (WFE) shows the wavefront phase map issued from the system aperture with a color code. The colors show the local wavefront phase variation in nanometers. A perfect system should show a zero value over the whole surface, meaning there is no phase error when the light reaches the focus (for an imaging device). The maximum range on the global wavefront is the Peak To Valley error (PTV). This PTV is done on 99% of the surface to avoid a global PTV increase because of a very local defect. The averaged error by Roor Mean Square is the RMS error. The Rayleigh "diffraction limit" quality metric is a quarter of the wavelength. For example in the green (543nm) the PTV error should be lower than 543/4= 135nm PTV.

Visibilité: Privée

The WFE map can provide the Point Spread Function (diffraction spot), the Modulation (Optical) Transfer Function (MTF/OTF) and the Strehl ratio among other information.

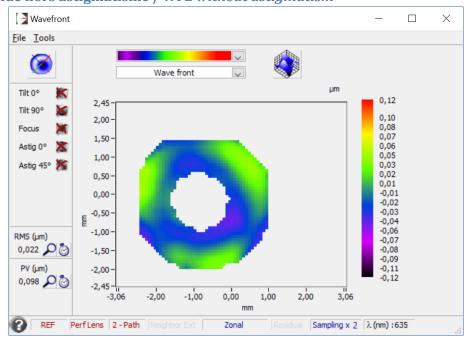
Evolution de l'astigmatisme durant d'alignement / Astigmatism evolution during alignment

Front d'onde / WFE 3.1.1

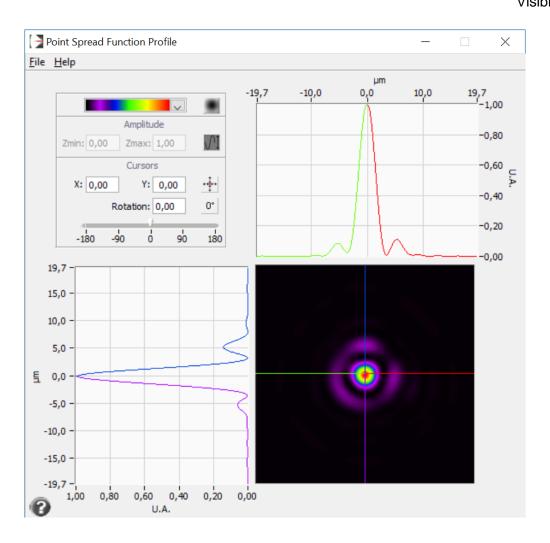

Le module est la direction de l'astigmatisme évolue selon la tension des vis d'alignement du miroir primaire, montrant une contrainte mécanique sur le miroir.

Visibilité : Privée

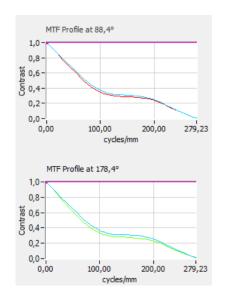
4 Mesures sur l'axe après alignement / On axis measurement after alignment


4.1 Mesure sur l'axe à 635nm / On axis at 635nm

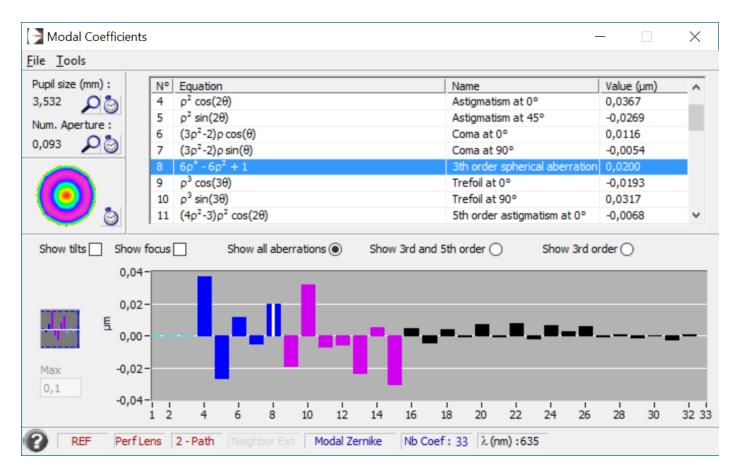
4.1.1 Front d'onde / WFE


Ratio de Strehl / Strehl Ratio: 0,915

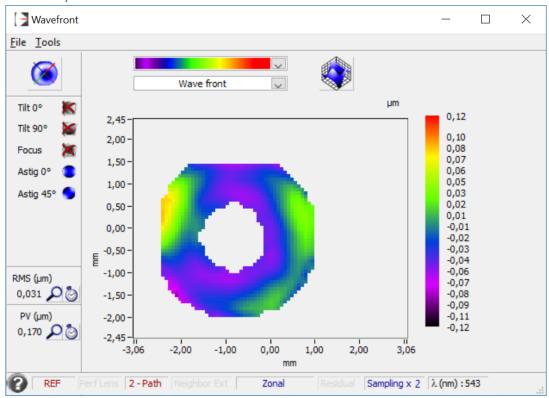
4.1.2 Front d'onde hors astigmatisme / WFE without astigmatism



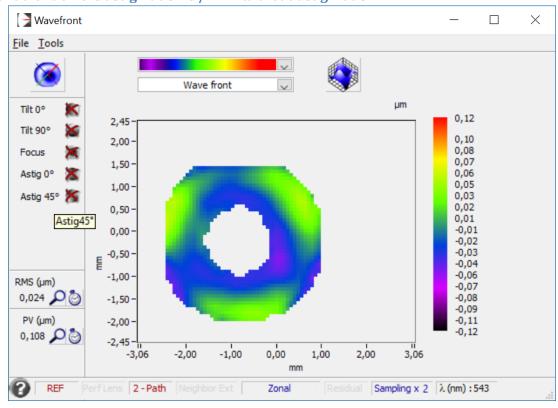
L'aberration dominante est un trefoil de faible module.


4.1.3 **PSF**

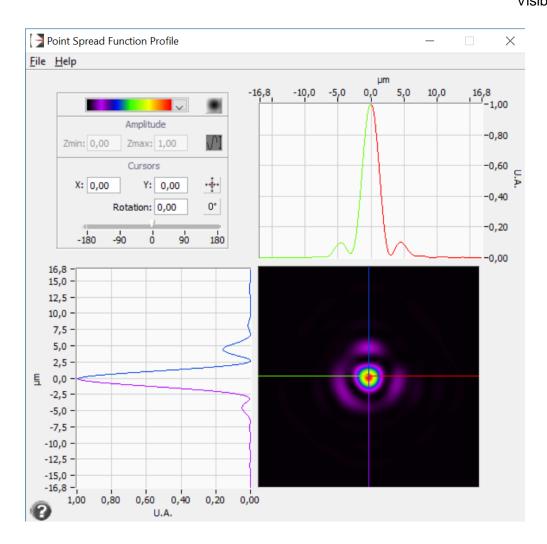
4.1.4 MTF



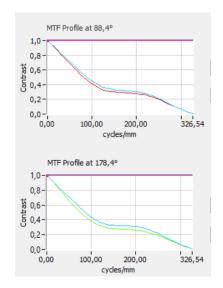
4.1.5 Décomposition de Zernike / Zernike polynomial breakdown


4.2 Mesure sur l'axe à 543nm / / On axis at 543nm

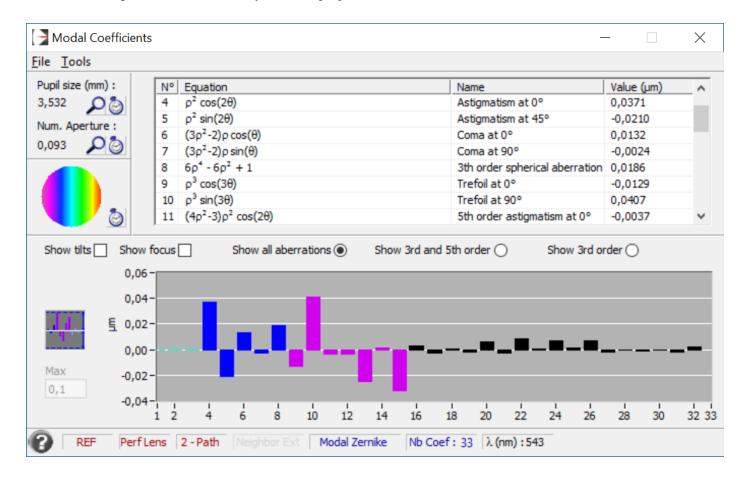
4.2.1 Front d'onde / WFE



Ratio de Strehl 0,879


4.2.2 Front d'onde hors astigmatisme / WFE without astigmatism

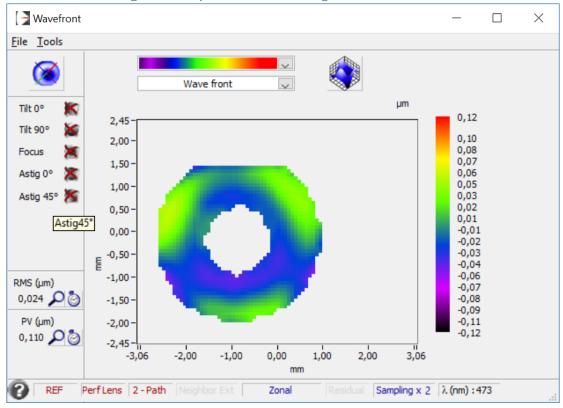
4.2.3 **PSF**



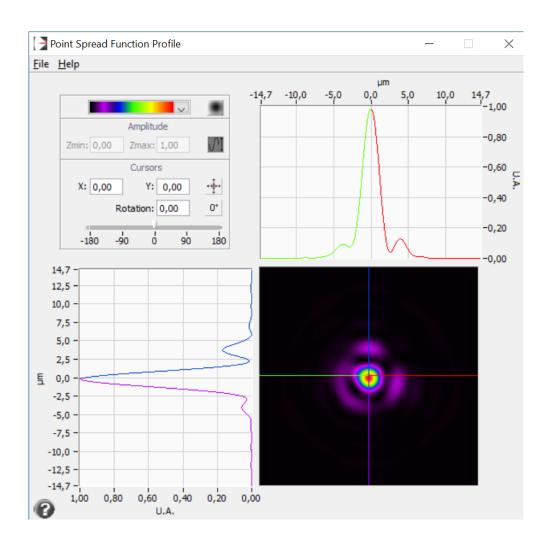
4.2.4 MTF


Visibilité : Privée

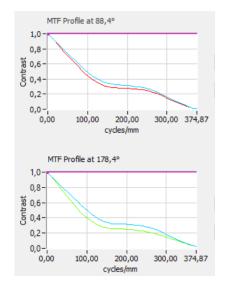
4.2.5 Décomposition de Zernike / Zernike polynomial breakdown


4.3 Mesure sur l'axe à 473nm / / On axis at 473nm

4.3.1 Front d'onde / WFE

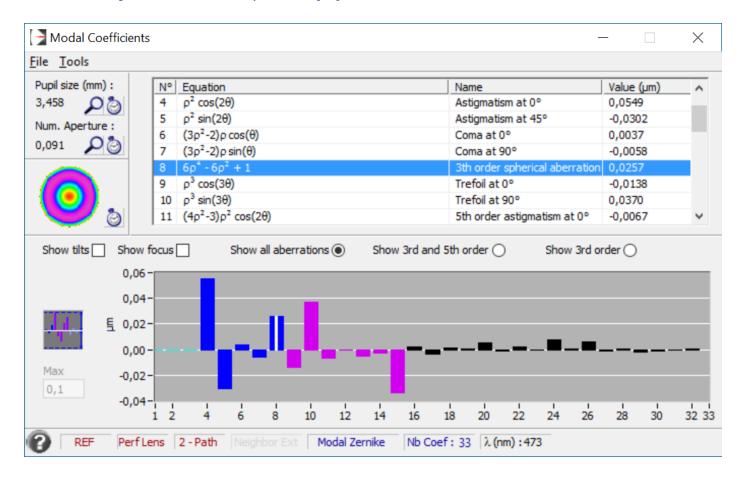

Ratio de Strehl 0,778

4.3.2 Front d'onde hors astigmatisme / WFE without astigmatism



© 2015 Airylab SARL, 34 rue Jean Baptiste Malon, 04800 Gréoux les Bains. +33 492788172 Les informations contenues dans ce rapport appartiennent à Airylab. Reproduction soumise à autorisation. Information and graphics in this report belongs to Airylab. Reproduction requires an a written authorization.

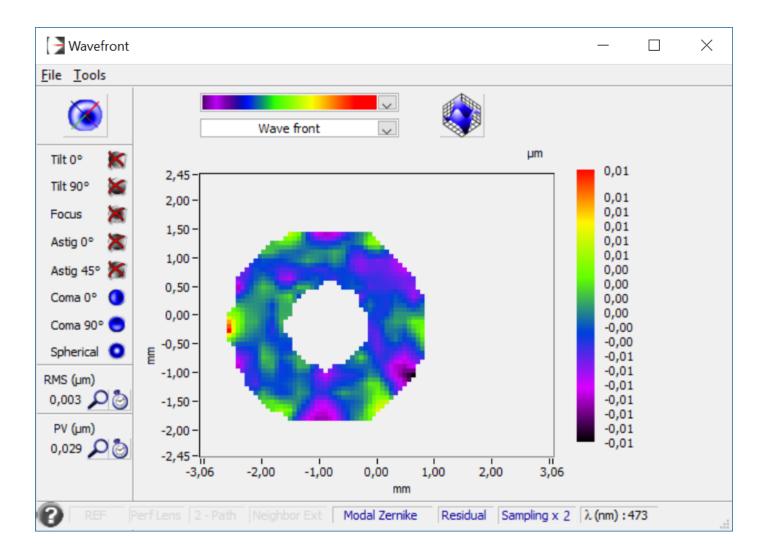
4.3.3 **PSF**



4.3.4 MTF

© 2015 Airylab SARL, 34 rue Jean Baptiste Malon, 04800 Gréoux les Bains. +33 492788172 Les informations contenues dans ce rapport appartiennent à Airylab. Reproduction soumise à autorisation. Information and graphics in this report belongs to Airylab. Reproduction requires an a written authorization.

4.3.5 Décomposition de Zernike / Zernike polynomial breakdown



4.4 Front d'onde Résiduel (mamelonnage) / Residual wavefront (ripple)

Objectif : Cette mesure permet de caractériser les défauts de quelques cm de diamètres. Il s'agît de ce qui est couramment appelé le mamelonnage.

Pour cette mesure on ignore les 32 premiers termes d'aberration de Zernike qui ont été pris en compte lors de la mesure du paragraphe 2 pour ne laisser que les défauts recherchés ici.

Objective: This wavefront error map shows the residual aberrations after the 32 first Zernike terms have been removed. That shows surface errors that are localized or with a very high order such as polishing circular patterns.

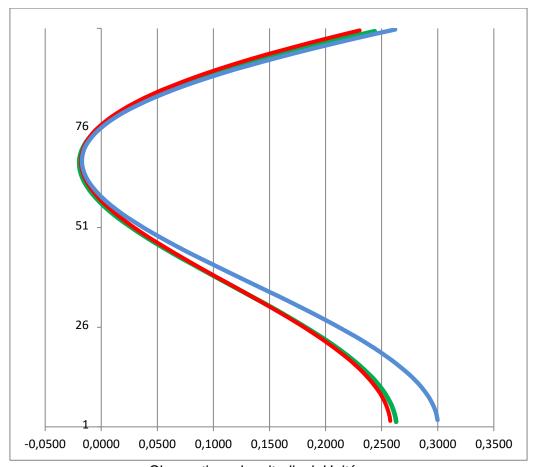
Visibilité : Privée

4.5 Chromatisme / Chromatism aberration

Objectif: La mesure du chromatisme concerne tous les systèmes optiques comportant des dioptres. Un élément transmissif a un comportement variable en fonction de la longueur d'onde.

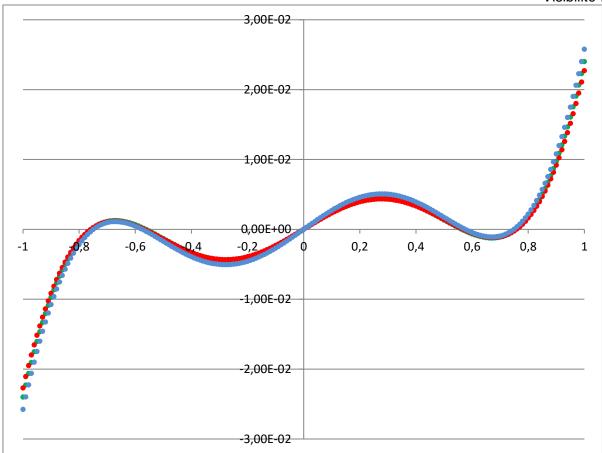
Les deux mesures <u>importantes sont le chromatisme</u> (décalage du foyer en fonction de la longueur d'onde) <u>et le sphérochromatisme</u>. Ces mesures permettent aussi de déterminer pour quelle longueur d'onde le système est optimisé, idéalement entre 500 et 550nm (vert).

Objective: Chromatism impacts partially or totally transmissive systems. Transmissive components have a behavior that changes depending on the wavelength in terms of focal length and spherical aberration. Spherochromatism graph determines the wavelength the system has been optimized for if any.


4.5.1 Décalage des meilleurs foci sur l'axe / Best foci shift on axis

En µm	
Rouge 635 nm	0
Vert 543 nm	+10
Bleu 473 nm	+10

Visibilité : Privée


4.5.2 Sphérochromatisme / Spherochromatism

Base de calcul : aberration sphérique 3eme, 5eme et 7eme ordre. Calculated on the 3rd, 5th and 7th spherical aberration orders.

Chromatisme longitudinal, Unités mm

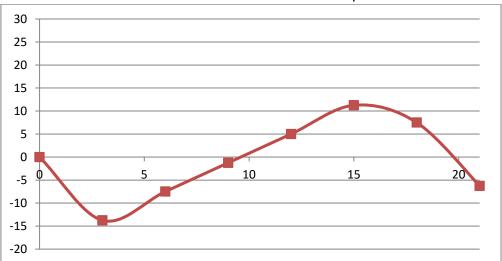
Visibilité : Privée

Chromatisme transverse, Unités mm

4.5.3 Aberration sphérique en fonction de la longueur d'onde / Spherical aberration vs wavelength

Le sphérochromatisme est nul. No spherochromatism.

5 Mesure dans le champ à 635nm / Performance in the field at 635nm


Objectif: Les mesures dans le champ permettent de vérifier les performances lorsqu'on s'éloigne du centre du champ ou du capteur. Ces performances sont impactées par les aberrations de champ classiques (coma et astigmatisme) et par la courbure de champ.

Those measures allow to check the system performances in the field. When moving from the optical axis, performances may decrease due to the field curvature, the astigmatism and the coma.

5.1 Courbure de champ / Field curvature

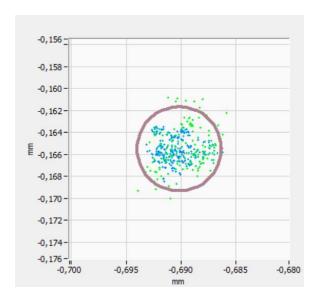
Mesure de 0 à 21mm / From 0 to 21mm from the optical axis Cercle de pleine lumière / Full illumination : >24 mm

Rayon de courbure de Petzval mesuré / Field curvature radius : NA Décalage du point à 21mm de l'axe / Defocus at 21mm from axis : -6 µm

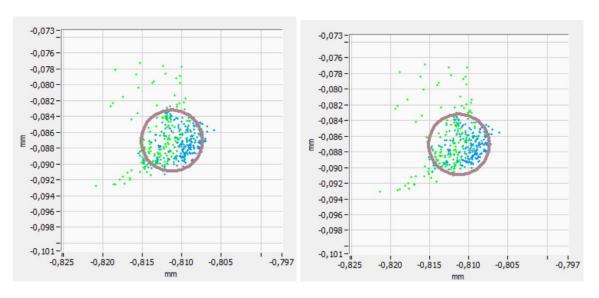
Le champ est plan / Flat field optical design

Visibilité : Privée

5.2 Spot diagram 635nm

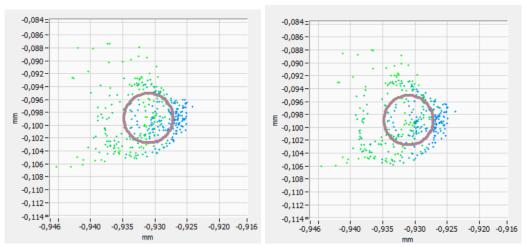

Le cercle représente la taille théorique de la tâche de diffraction.

Les points verts représentent les rayons marginaux (extérieur de la pupille), les bleus les rayons paraxiaux (proche de l'axe optique).

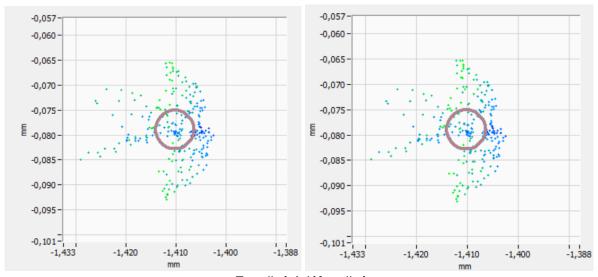

Les *spot diagrams* dans le champ sont donnés sans prendre en compte la courbure de champ à gauche (cas d'une utilisation avec un oculaire), et avec la défocalisation due à la courbure de champ à droite (cas d'une utilisation avec un film/capteur plan).

Those picture shows the spot diagrams at the focus (visual) and with the fied curvature defocus (imaging). Marginal rays are green, paraxial rays are blue.

Sur l'axe / On axis


6mm

© 2015 Airylab SARL, 34 rue Jean Baptiste Malon, 04800 Gréoux les Bains. +33 492788172 Les informations contenues dans ce rapport appartiennent à Airylab. Reproduction soumise à autorisation. Information and graphics in this report belongs to Airylab. Reproduction requires an a written authorization.


Focalisé / défocalisé

12mm

Focalisé / défocalisé

21mm

Focalisé / défocalisé

Fin du document.