Visibilité : Privée

AiryLab. 34 rue Jean Baptiste Malon, 04800 Gréoux les Bains

Rapport de mesure

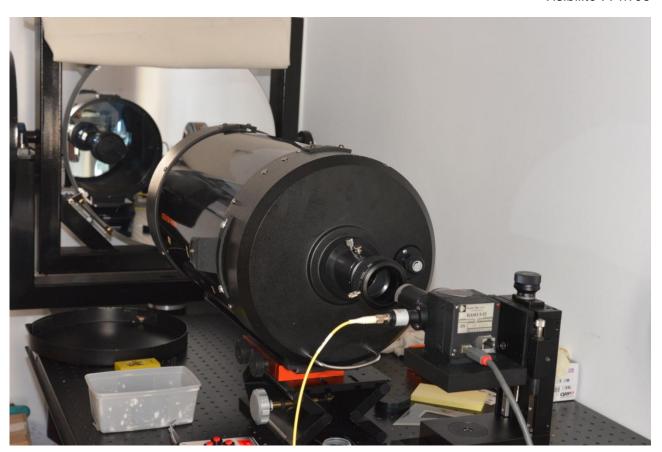
Référence	2015-35003
Date	27/08/2015
Opérateur	FJ
Procédure de mesure	SC-DP
Haso	HA-4333
LIP	LI-1028
Objectif(s)	MOD32-10
Miroir	RS-530

Client	xxx
Type d'optique	Schmidt Cassegrain
Fabricant	Celestron
Nom/modèle	C11
S/N	

Longueur d'onde	
473	
543	
635	
805	

Termes d'aberration pris en compte dans les résultats	
Tilt X	
Tilt Y	
Focus	
Astig 0°	
Astig 45°	
Coma 0°	
Coma 90°	
Sphérique	

Incertitude PTV	5,96nm
Incertitude RMS	0,56nm
Interpolation	X2
Mode	Zonal + modal
référence	Oui
Mesures moyennées	200
Double passage	Oui
température	25°
Sous pupilles	-
Conjugaison de pupille	Oui


Essais réalisés	
Centrage sur l'axe ⁽¹⁾	RA
Mesure sur l'axe	Oui
Mesure chromatisme	Oui
Mesure sur mécanique	Oui
Alignement optique (« collimation »)	Oui
Mesure dans le champ	Non
Courbure de champ	Non
Système correcteur	Non
Conjugaison	∞ Foyer

^{(1):} RR rétroréflexion laser HENE, RA réduction des aberrations de champ.

Sommaire

1	Donne	ées théoriques	3
2	Mesui	es sur l'axe après alignement du secondaire BF 165mm	4
	2.1 N	lesure sur l'axe à 635nm	4
	2.1.1	Front d'onde	4
	2.1.2	PSF	5
	2.1.3	MTF	5
	2.1.4	Décomposition de Zernike	6
	2.2 N	lesure sur l'axe à 543nm	7
	2.2.1	Front d'onde	7
	2.2.2	Front d'onde au meilleur foyer	7
	2.2.3	PSF	8
	2.2.4	MTF	8
	2.2.5	Décomposition de Zernike	9
	2.3 N	lesure sur l'axe à 473nm	10
	2.3.1	Front d'onde	10
	2.3.2	Front d'onde au meilleur foyer	10
	2.3.3	PSF	11
	2.3.4	MTF	11
	2.3.5	Décomposition de Zernike	11
	2.4 C	hromatisme	13
	2.4.1	Décalage des meilleurs foci sur l'axe	13
	2.4.2	Sphérochromatisme à F10	13
	2.4.3	Centrage du sphérochromatisme	14

Visibilité : Privée

1 Données théoriques

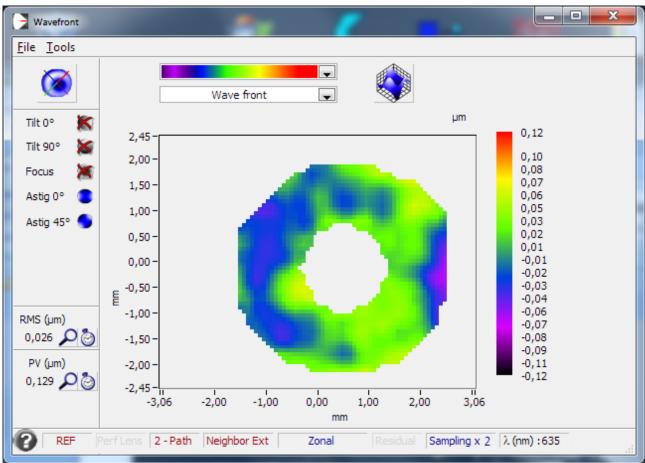
Focale: 2800mm. Pupille: 280mm.

Nombre d'ouverture : 10

Diamètre théorique de la tâche de diffraction :

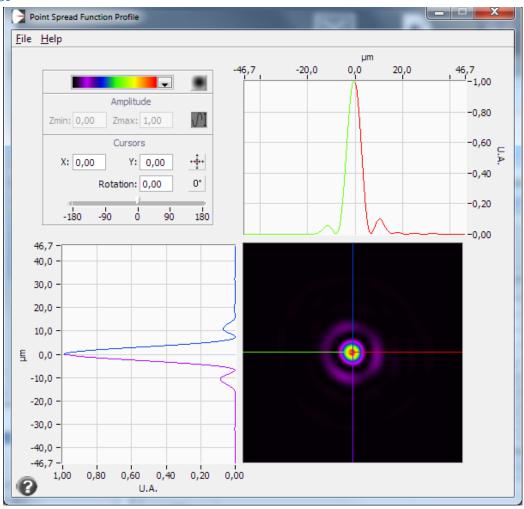
· · · · · · · · · · · · · · · · · · ·	
Focale	2800
Diamètre	280
Longueur d'onde	Taille PSF μm
635	15,49
543	13,25
473	11,54

Fréquences théoriques de coupure de la fonction de transfert de modulation (MTF) en cycles/mm

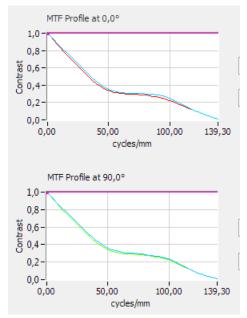

Focale	2800
Diamètre	280
Longueur d'onde	Coupure
635	157,48
543	184,16
473	211,42

Objectif des mesures de front d'onde : Ces mesures correspondent à la mesure de la forme globale du front d'onde issu du système. Il s'agît de la mesure la plus importante en termes de résolution optique. Cette mesure donne les valeurs d'erreur sur le front d'onde Peak To Valley (PTV) et moyennée (RMS). Un instrument est considéré comme étant limité par la diffraction pour la valeur d'erreur PTV de 135nm. Néanmoins il faut prendre en compte le diamètre et l'ouverture relative de l'instrument : plus l'instrument est grand et ouvert et plus il est difficile d'avoir une erreur faible. Ces mesures peuvent être effectuées sur l'axe et dans le champ et à différentes longueurs d'onde. La mesure du front d'onde permet de déduire la PSF (tâche de diffraction), la fonction de transfert de modulation (contraste en fonction des fréquences spatiales) et le ratio de Strehl.

2 Mesures sur l'axe après alignement du secondaire BF 165mm

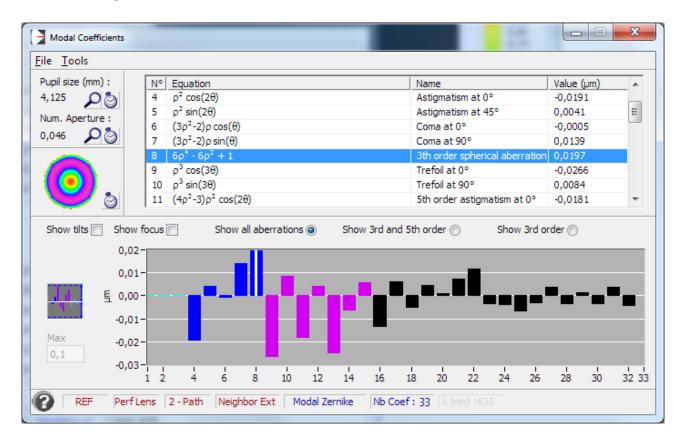

2.1 Mesure sur l'axe à 635nm

2.1.1 Front d'onde

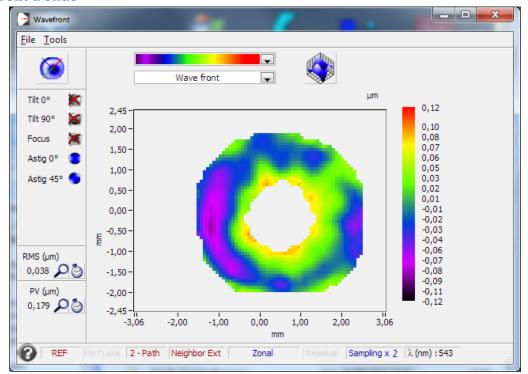


Ratio de Strehl 0,936

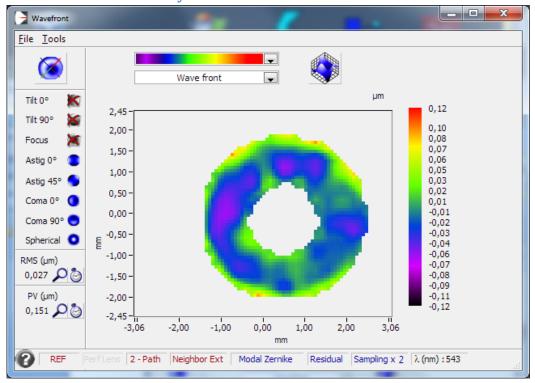
2.1.2 **PSF**



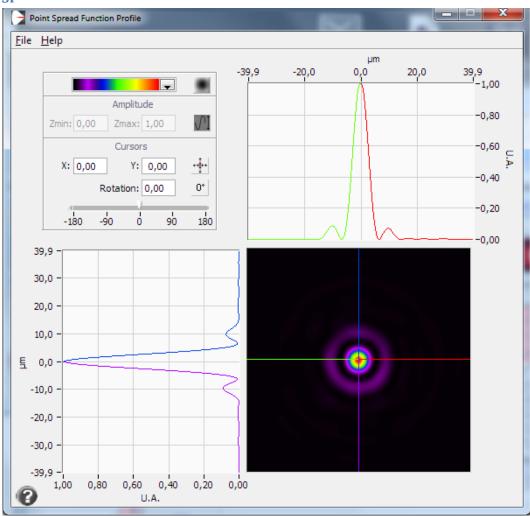
2.1.3 MTF


Visibilité: Privée

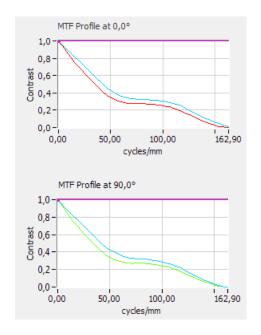
2.1.4 Décomposition de Zernike


2.2 Mesure sur l'axe à 543nm

2.2.1 Front d'onde

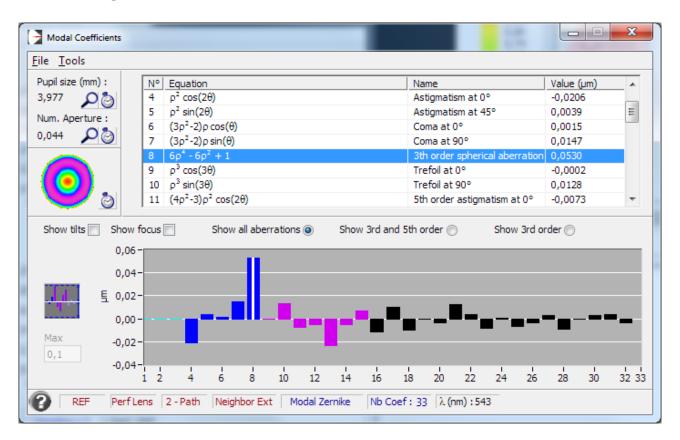

Ratio de Strehl 0,823

2.2.2 Front d'onde au meilleur foyer

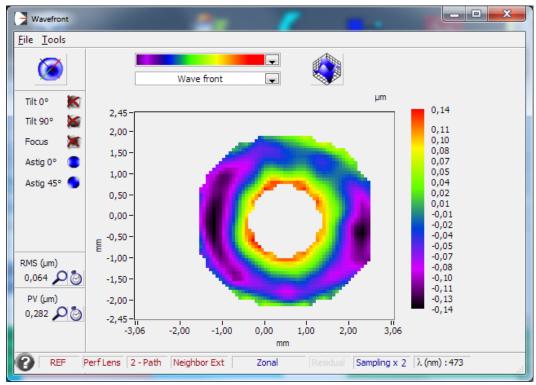


Ratio de Strehl 0,910

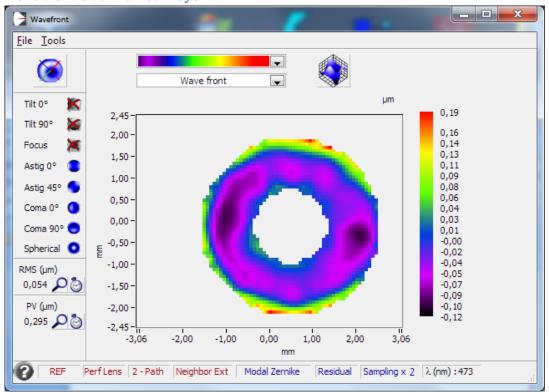
2.2.3 **PSF**



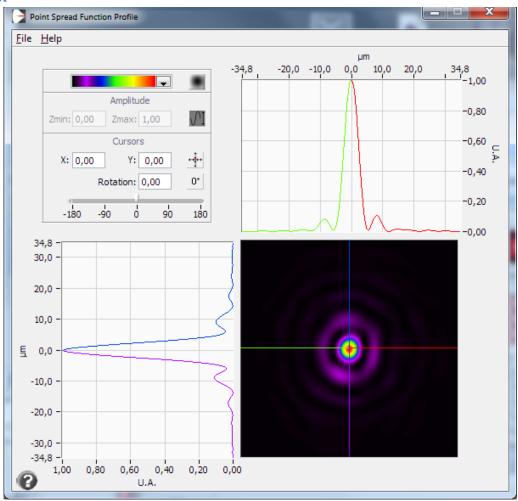
2.2.4 MTF


Visibilité: Privée

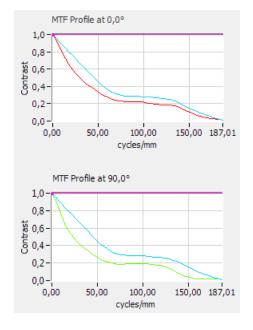
2.2.5 Décomposition de Zernike


2.3 Mesure sur l'axe à 473nm

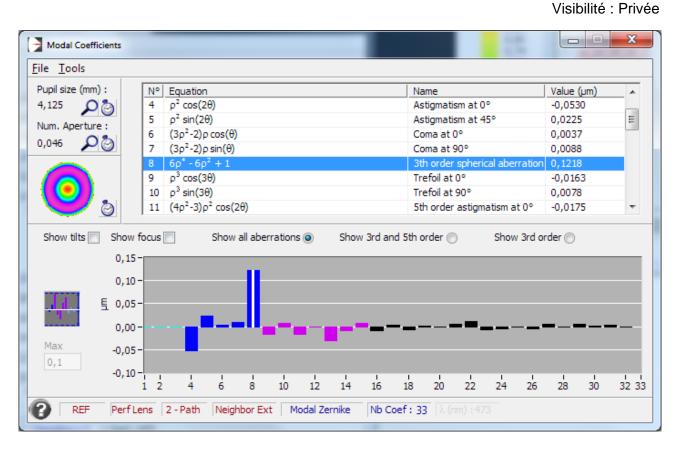
2.3.1 Front d'onde


Ratio de Strehl 0,474

2.3.2 Front d'onde au meilleur foyer



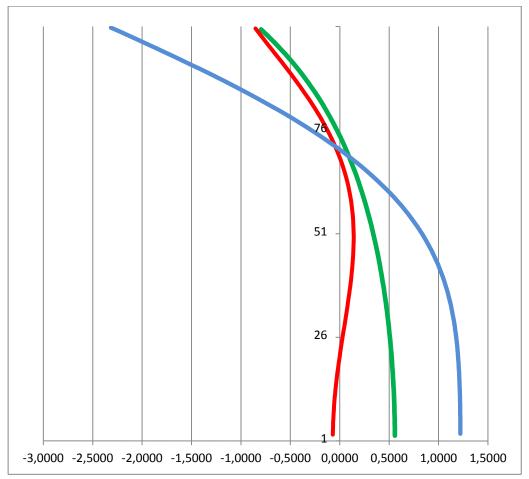
Ratio de Strehl 0,614


2.3.3 **PSF**

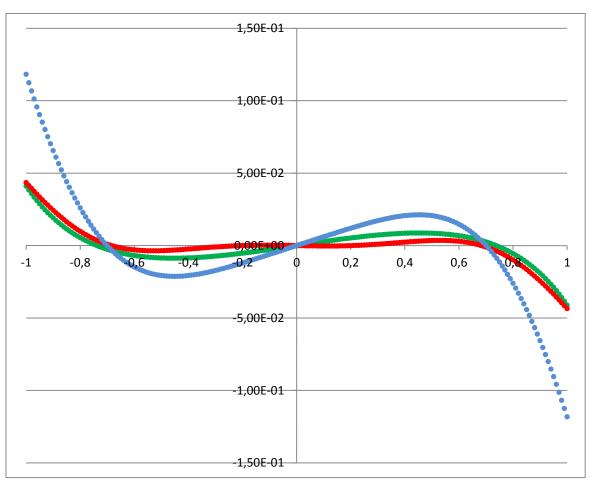
2.3.4 MTF

2.3.5 Décomposition de Zernike

2.4 Chromatisme

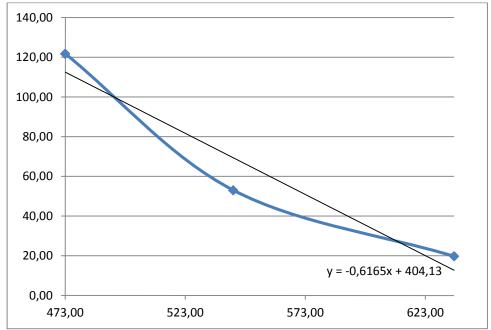

Objectif: La mesure du chromatisme concerne tous les systèmes optiques comportant des dioptres. Un élément transmissif a un comportement variable en fonction de la longueur d'onde. Les deux mesures <u>importantes sont le chromatisme</u> (décalage du foyer en fonction de la longueur d'onde) et le sphérochromatisme. Ces mesures permettent aussi de déterminer pour quelle longueur d'onde le système est optimisé, idéalement entre 500 et 550nm (vert).

2.4.1 Décalage des meilleurs foci sur l'axe


En µm	
Rouge 635 nm	0
Vert 543 nm	-50
Bleu 473 nm	+20

2.4.2 Sphérochromatisme à F10

Base de calcul : aberration sphérique 3eme, 5eme et 7eme ordre.



Chromatisme longitudinal, Unités mm

Chromatisme transverse (fan plot), Unités mm

2.4.3 Centrage du sphérochromatisme

Aberration sphérique de 3eme ordre en fonction de la longueur d'onde

Visibilité : Privée

Fin du document.