Visibilité : Privée

AiryLab. 34 rue Jean Baptiste Malon, 04800 Gréoux les Bains

Rapport de mesure

Référence	2013-33001
Date	12/07/2012
Opérateur	FJ
Procédure de mesure	SC-DP
Haso	HA-4333
LIP	LI-1028
Objectif(s)	MOD32-10
Miroir	RS-530

Client	xxx
Type d'optique	Schmidt Cassegrain
Fabricant	Celestron
Nom/modèle	C11EdgeHD
S/N	

Longueur d'onde
473
543
635
805

Termes d'aberration pris en compte dans les résultats					
Tilt X					
Tilt Y					
Focus					
Astig 0°					
Astig 45°					
Coma 0°					
Coma 90°					
Sphérique					

Incertitude PTV	5,96nm
Incertitude RMS	0,56nm
Interpolation	X2
Mode	Zonal + modal
référence	Oui
Mesures moyennées	200
Double passage	Oui
température	20°
Sous pupilles	-
Conjugaison de pupille	Oui

Essais réalisés				
Centrage sur l'axe ⁽¹⁾	RA			
Mesure sur l'axe	Oui			
Mesure chromatisme	Oui			
Mesure sur mécanique	Oui			
Alignement optique (« collimation »)	Oui			
Mesure dans le champ	Oui			
Courbure de champ	Oui			
Système correcteur	Non			
Conjugaison	∞ Foyer			

^{(1):} RR rétroréflexion laser HENE, RA réduction des aberrations de champ.

Sommaire

1	Donnée	s théoriques	3
2	Mesures	s sur l'axe BF 130mm	4
	2.1 Mes	sure sur l'axe à 635nm	4
	2.1.1	Front d'onde	4
	2.1.2	PSF	5
	2.1.3	MTF	5
	2.1.4	Décomposition de Zernike	6
	2.2 Mes	sure sur l'axe à 543nm	7
	2.2.1	Front d'onde	7
	2.2.2	PSF	8
	2.2.3	MTF	8
	2.2.4	Décomposition de Zernike	9
	2.3 Mes	sure sur l'axe à 473nm	10
	2.3.1	Front d'onde	10
	2.3.2	PSF	11
	2.3.3	MTF	12
	2.3.4	Décomposition de Zernike	12
	2.4 Chr	omatisme	13
	2.4.1	Décalage des meilleurs foci sur l'axe	13
	2.4.2	Sphérochromatisme à F10	13
3	Mesure	dans le champ à 635nm	15
	3.1 Cou	urbure de champ	15
	3.2 Spc	ot diagram	16

Visibilité : Privée

1 Données théoriques

Focale: 2800mm. Pupille: 280mm.

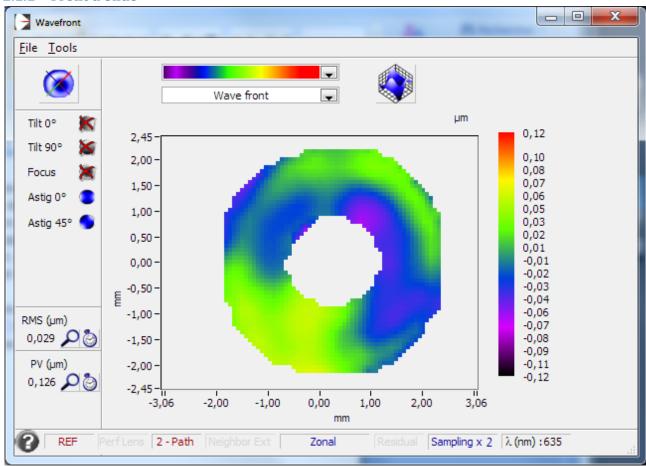
Nombre d'ouverture : 10

Diamètre théorique de la tâche de diffraction :

Focale	2800				
Diamètre	280				
Longueur d'onde	Taille PSF μm				
635	15,49				
543	13,25				
473	11,54				

Fréquences théoriques de coupure de la fonction de transfert de modulation (MTF) en cycles/mm

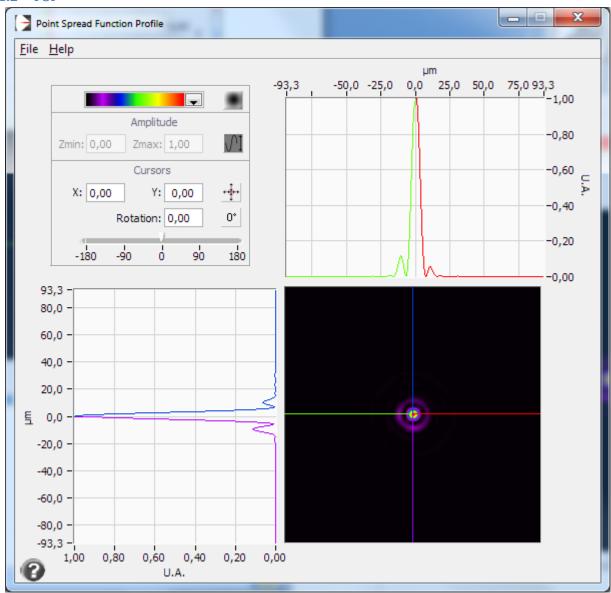
Focale	2800				
Diamètre	280				
Longueur d'onde	Coupure				
635	157,48				
543	184,16				
473	211,42				

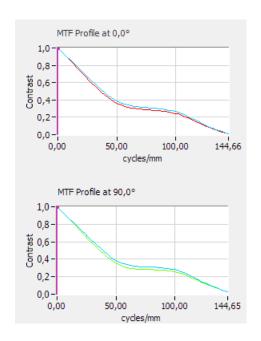

Objectif des mesures de front d'onde : Ces mesures correspondent à la mesure de la forme globale du front d'onde issu du système. Il s'agît de la mesure la plus importante en termes de résolution optique. Cette mesure donne les valeurs d'erreur sur le front d'onde Peak To Valley (PTV) et moyennée (RMS). Un instrument est considéré comme étant limité par la diffraction pour la valeur d'erreur PTV de 135nm. Néanmoins il faut prendre en compte le diamètre et l'ouverture relative de l'instrument : plus l'instrument est grand et ouvert et plus il est difficile d'avoir une erreur faible.

Ces mesures peuvent être effectuées sur l'axe et dans le champ et à différentes longueurs d'onde. La mesure du front d'onde permet de déduire la <u>PSF</u> (tâche de diffraction), la <u>fonction de transfert de modulation</u> (contraste en fonction des fréquences spatiales) et le <u>ratio de Strehl</u>.

2 Mesures sur l'axe BF 146mm

2.1 Mesure sur l'axe à 635nm

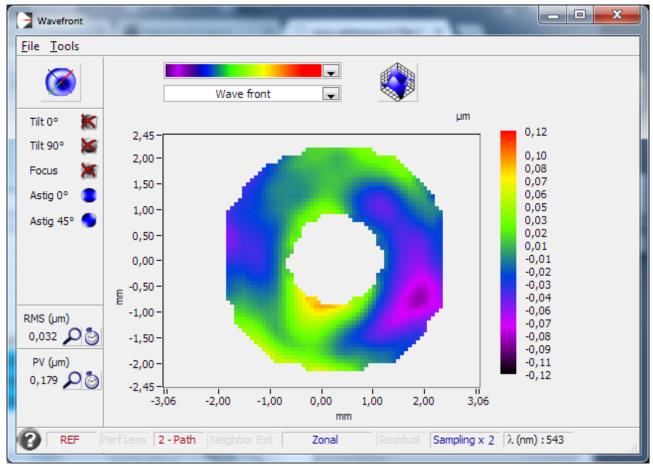

2.1.1 Front d'onde


Ratio de Strehl 0,922

Visibilité : Privée

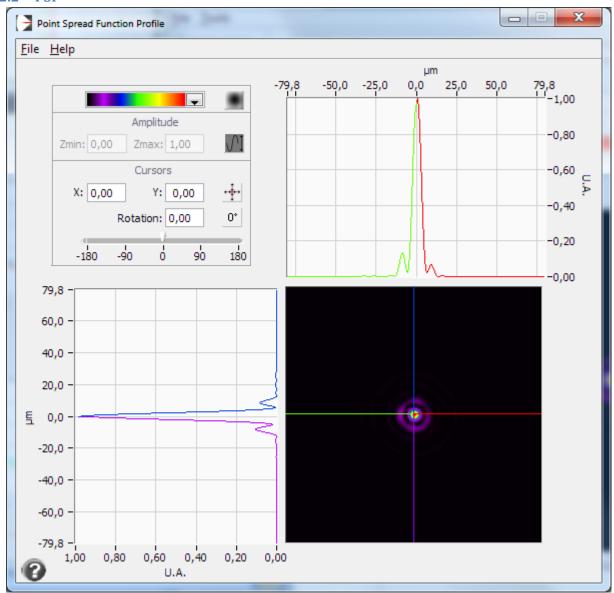

2.1.2 **PSF**

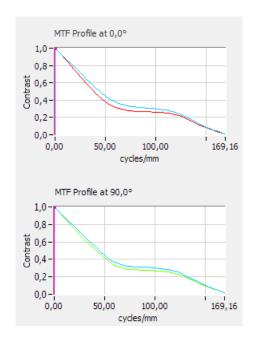
2.1.3 MTF



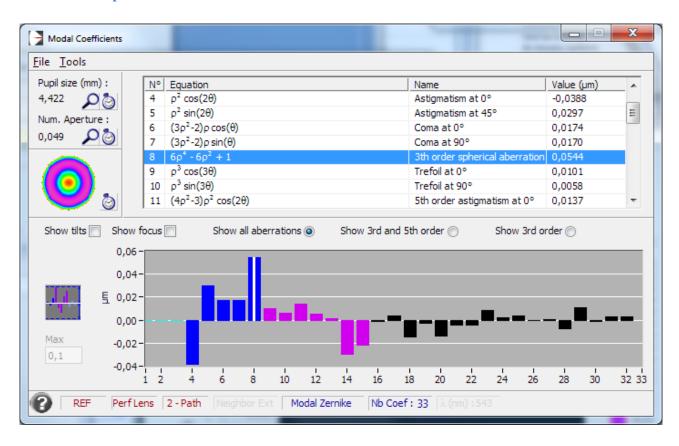
2.1.4 Décomposition de Zernike

2.2 Mesure sur l'axe à 543nm

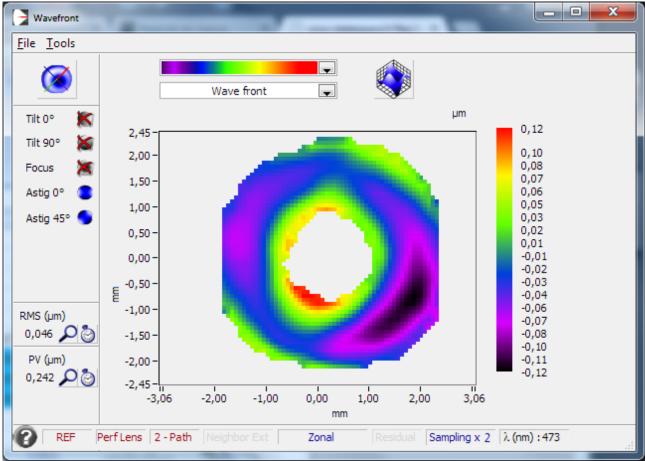

2.2.1 Front d'onde


Ratio de Strehl 0,872

Visibilité : Privée


2.2.2 **PSF**

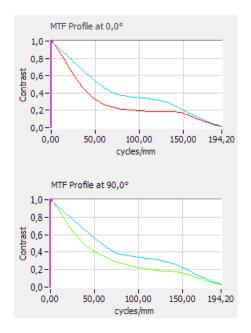
2.2.3 MTF



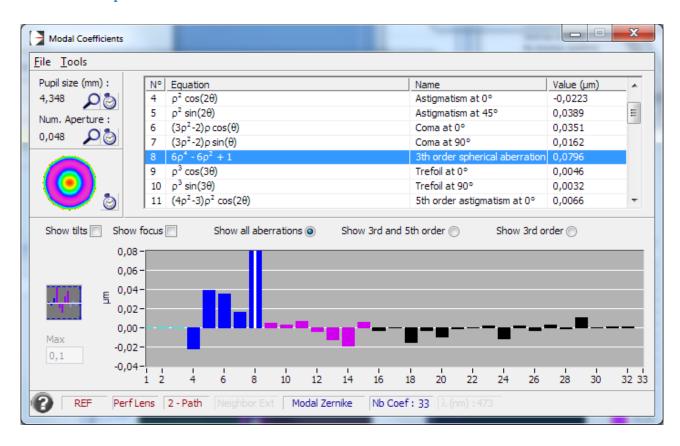
2.2.4 Décomposition de Zernike

2.3 Mesure sur l'axe à 473nm

2.3.1 Front d'onde


Ratio de Strehl 0,690

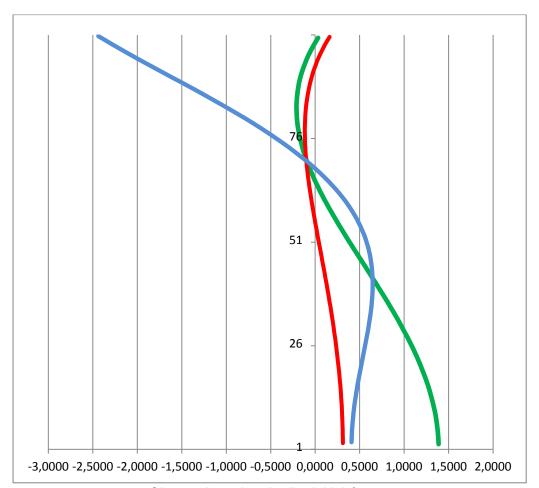
Visibilité : Privée


2.3.2 **PSF**

2.3.3 MTF

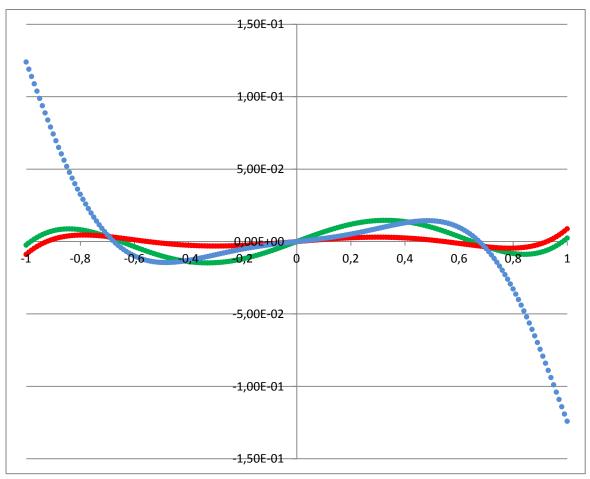
2.3.4 Décomposition de Zernike

2.4 Chromatisme


Objectif: La mesure du chromatisme concerne tous les systèmes optiques comportant des dioptres. Un élément transmissif a un comportement variable en fonction de la longueur d'onde. Les deux mesures <u>importantes sont le chromatisme</u> (décalage du foyer en fonction de la longueur d'onde) et le sphérochromatisme. Ces mesures permettent aussi de déterminer pour quelle longueur d'onde le système est optimisé, idéalement entre 500 et 550nm (vert).

2.4.1 Décalage des meilleurs foci sur l'axe

En µm	
Rouge 635 nm	0
Vert 543 nm	-40
Bleu 473 nm	-120


2.4.2 Sphérochromatisme à F10

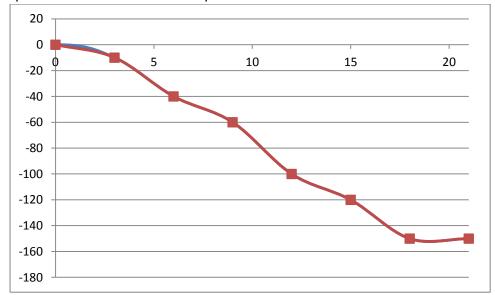
Base de calcul : aberration sphérique 3eme, 5eme et 7eme ordre.

Chromatisme longitudinal, Unités mm

Visibilité : Privée

Chromatisme transverse, Unités mm

3 Mesure dans le champ à 635nm

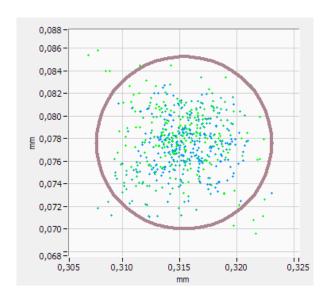

Objectif: Les mesures dans le champ permettent de vérifier les performances lorsqu'on s'éloigne du centre du champ ou du capteur. Ces performances sont impactées par les aberrations de champ classiques (<u>coma</u> et <u>astigmatisme</u>) et par la <u>courbure de champ</u>.

3.1 Courbure de champ

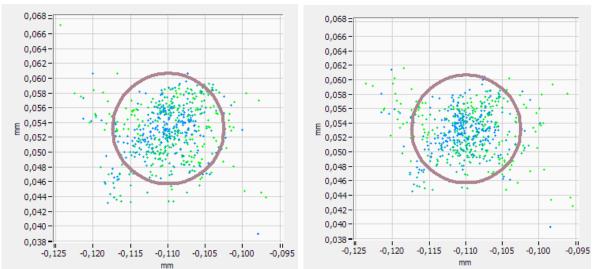
Mesure de 0 à 21mm

Cercle de pleine lumière : <24 mm

Rayon de courbure de Petzval mesuré : 3375mm Décalage du point à 21mm de l'axe : -150 µm

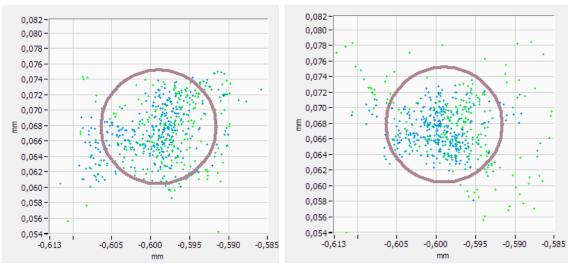

3.2 Spot diagram

Le cercle représente la taille théorique de la tâche de diffraction.

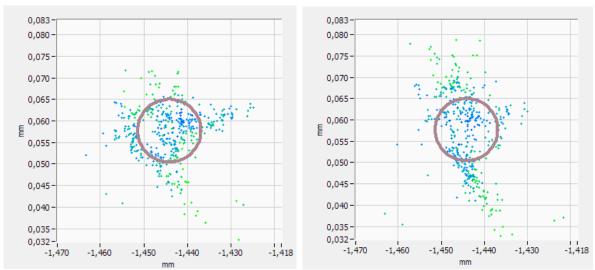

Les points verts représentent les rayons marginaux (extérieur de la pupille), les bleus les rayons paraxiaux (proche de l'axe optique).

Les *spot diagrams* dans le champ sont donnés sans prendre en compte la courbure de champ à gauche (cas d'une utilisation avec un oculaire), et avec la défocalisation due à la courbure de champ à droite (cas d'une utilisation avec un film/capteur plan).

Sur l'axe



6mm


Focalisé / défocalisé

12mm

Focalisé / défocalisé

21mm

Focalisé / défocalisé

Référence	:	2	01	۱3-	33	00	1	FJ
	_				_	_		_

Visibilité : Privée

Fin du document.