Visibilité : Privée

AiryLab. 12 impasse de la Cour, 83560 Vinon sur Verdon

Rapport de mesure

Référence	2012-19002
Date	02/05/2012
Opérateur	FJ
Procédure de mesure	PB-DP
Haso	HA-4333
LIP	LI-1028
Objectif(s)	MOD32-4
Miroir	RS-530

Client	xxx
Type d'optique	Parabolique
Fabricant	Orion Optics
Nom/modèle	400/1600 42mm
S/N	-

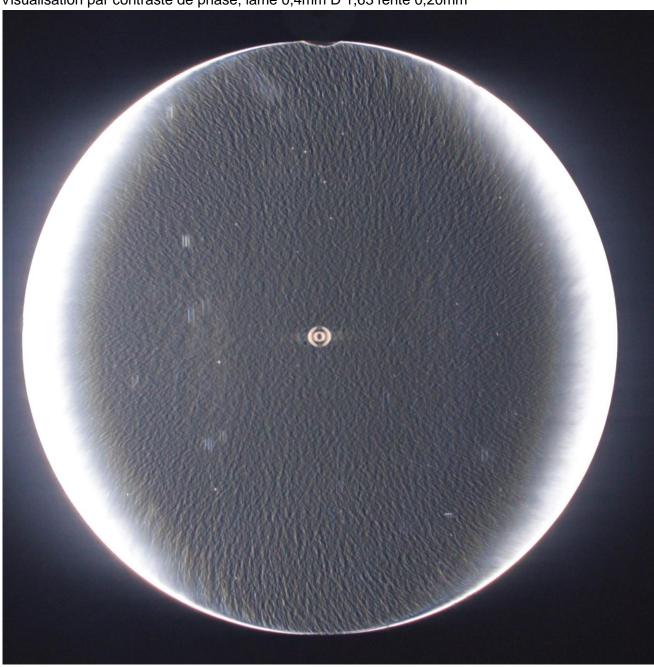
Longueur d'onde
473
543
635
805

Towns or dishawation with an agenta down los with the	
Termes d'aberration pris en compte dans les résultats	
Tilt X	
Tilt Y	
Focus	
Astig 0°	
Astig 45°	
Coma 0°	
Coma 90°	
Sphérique	

Incertitude PTV	18,71 nm
Incertitude RMS	3,93 nm
Interpolation	X2
Mode	Zonal + modal
référence	Oui
Mesures moyennées	1000
Double passage	Oui
température	21°
Sous pupilles	-
Conjugaison de pupille	Oui

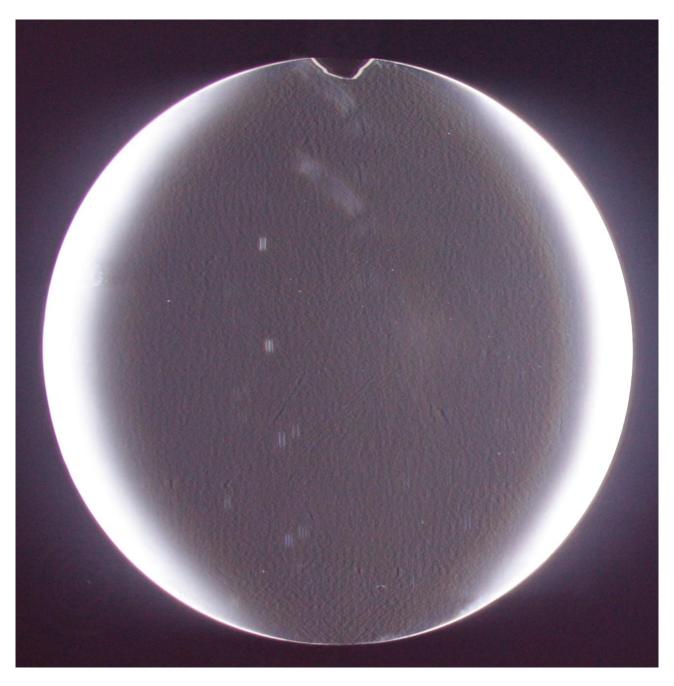
Essais réalisés		
Centrage sur l'axe ⁽¹⁾	RR+RA	
Mesure sur l'axe	Oui	
Mesure chromatisme	NA	
Mesure sur mécanique	Non	
Alignement optique (« collimation »)	Non	
Mesure dans le champ	Non	
Courbure de champ	Non	
Système correcteur	Non	
Conjugaison	∞ Foyer	

^{(1):} RR rétroréflexion du faisceau collimaté du LIP ou d'un laser HENE, RA réduction des aberrations de champ.


Visibilité : Privée

Sommaire

1	Eta	at de surface du miroir primaire	3
		esure du miroir primaire à 635nm	
		Front d'onde	
	2.2	Décomposition de Zernike	9
	2.3	PSF calculée et Strehl ratio	9
	2.4	Spot Diagram	10
3	Me	esure du miroir secondaire	11
	Fin d	lu document	12


1 Etat de surface du miroir primaire

Visualisation par contraste de phase, lame 0,4mm D 1,63 fente 0,20mm

Visibilité : Privée

Exemple donné à titre de référence : miroir 400/1600 artisanal visualisé avec les mêmes paramètres de lame et de fente.

Note : les traces dupliquées verticalement sont dues au miroir d'autocollimation.

Visibilité : Privée

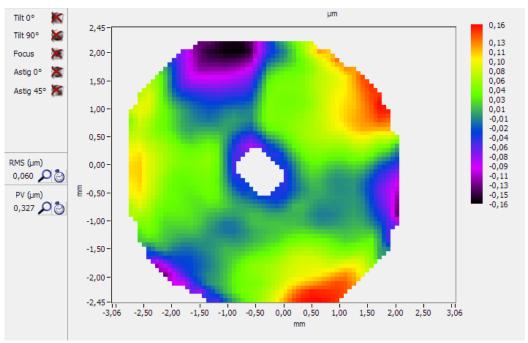
2 Mesure du miroir primaire à 635nm

Focale: environ 1600mm. Pupille: environ 400mm.

Nombre d'ouverture : 4

Diamètre théorique de la tâche de diffraction :

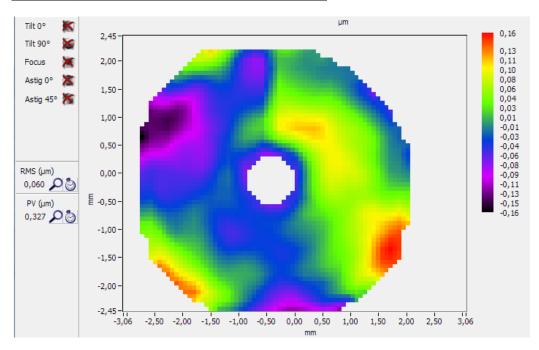
Focale	1600
Diamètre	400
Longueur d'onde	Taille PSF μm
635	6,20
543	5,30
473	4,62


Fréquences théoriques de coupure de la fonction de transfert de modulation (MTF) en cycles/mm

Focale	1600
Diamètre	400
Longueur d'onde	Coupure
635	393,70
543	460,41
473	528,54

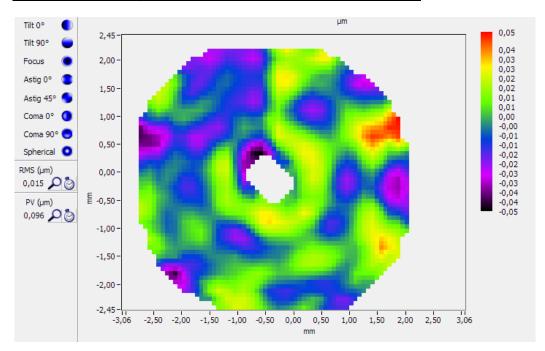
2.1 Front d'onde

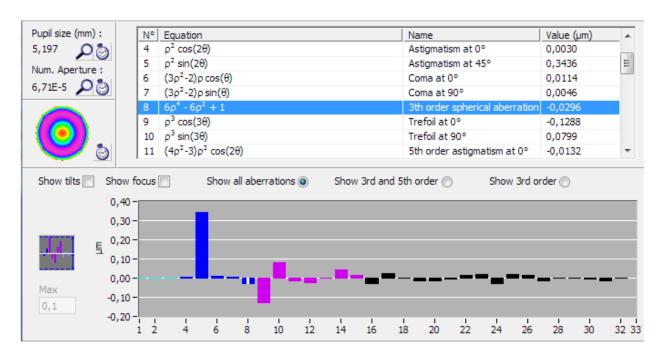
Note : nous avons détecté de l'astigmatisme induit par le support du miroir sur son stand, aussi l'astigmatisme de 3eme ordre est retiré. Cet astigmatisme est retiré sans passer par un fit de Zernike pour conserver les défauts d'ordres élevés.


La direction de l'astigmatisme de 3eme ordre ne permet de pas statuer sur la présence d'un astigmatisme du miroir.

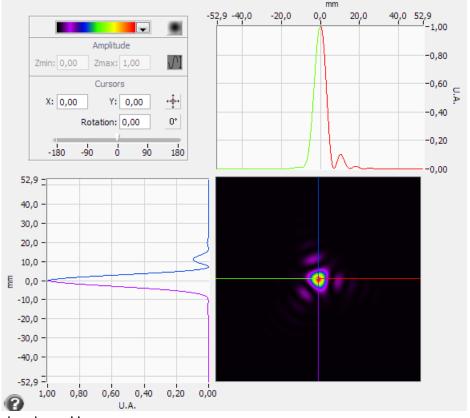
Direction astigmatisme: 46,6°

Visibilité : Privée

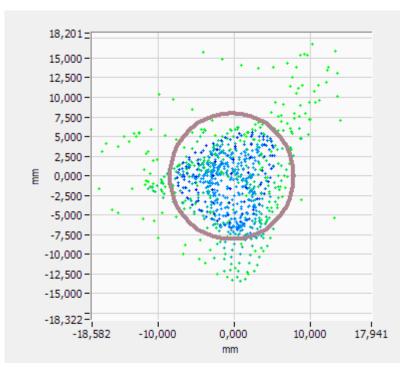

Mesure après une rotation à 90° en sens horaire


Direction astigmatisme: 34,8°

Le trefoil constaté tourne avec le miroir et est donc réel.

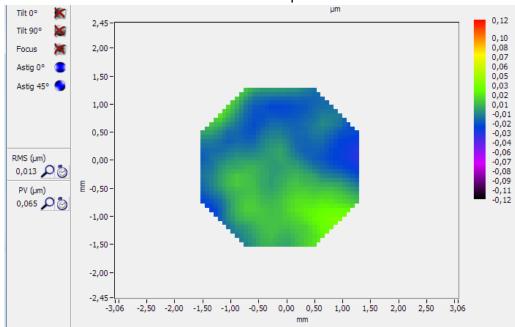

Défauts résiduels après soustraction des 33 termes de Zernike

2.2 Décomposition de Zernike


2.3 PSF calculée et Strehl ratio

Note: Echelle locale au Haso

Strehl hors astigmatisme de 3eme ordre : 0,710


2.4 Spot Diagram

Note : échelle locale au Haso, le cercle symbolise la tâche de diffraction théorique.

3 Mesure du miroir secondaire

Note : le second a été testé sur une surface partielle.

Visibilité : Privée

Fin du document.